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SUMMARY

The steady, axisymmetric laminar flow of a Newtonian fluid past a centrally-located sphere in a pipe first
loses stability with increasing flow rate at a steady O(2)-symmetry breaking bifurcation point. Using
group theoretic results, a number of authors have suggested techniques for locating singularities in
branches of solutions that are invariant with respect to the symmetries of an arbitrary group. These
arguments are presented for the O(2)-symmetry encountered here and their implementation for O(2)-
symmetric problems is discussed. In particular, how a bifurcation point may first be detected and then
accurately located using an ‘extended system’ is described. Also shown is how to decide numerically if the
bifurcating branch is subcritical or supercritical. The numerical solutions were obtained using the finite
element code ENTWIFE. This has enabled the computation of the symmetry breaking bifurcation point
for a range of sphere-to-pipe diameter ratios. A wire along the centerline of the pipe downstream of the
sphere is also introduced, and its effect on the critical Reynolds number is shown to be small. Copyright
© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The external flow past a sphere has attracted considerable attention for at least the past 60
years, since the pioneering experimental work of Möller [1]. More recent experimental
investigations by Goldburg and Florsheim [2], Margarvey and Bishop [3], Nakamura [4] and
Wu and Faeth [5], and computational studies by Natarajan and Acrivos [6], Tomboulides et al.
[7] and Tavener [8], have all concluded that the initially steady axisymmetric flow past the
sphere loses stability to a steady, asymmetric flow above a critical flow rate. The experimental
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studies and the computations of Tomboulides et al. [7] have shown that this steady asymmetric
flow in turn loses stability to a time-dependent flow with a further small increase in the flow
rate.

Natarajan and Acrivos [6] and Tavener [8] both used the finite element method (FEM) to
compute the steady axisymmetric flow past a sphere. Natarajan and Acrivos [6] investigated
the classical exterior problem in an unbounded domain, while Tavener [8] located the sphere
along the axis of a pipe and thereby introduced a new parameter, the ‘blockage ratio’, which
is the ratio of sphere diameter to pipe diameter. The basic axisymmetric flow is linearly stable
if and only if all eigenvalues of a large generalized non-symmetric eigenvalue problem lie in the
stable half plane, but the flow loses stability as soon as a single eigenvalue or eigenvalue pair
crosses the imaginary axis into the unstable half plane. Natarajan and Acrivos [6] employed a
shift and invert strategy on a complex matrix eigenvalue problem, while Tavener [8] used a
Cayley transform technique [9] on an equivalent real matrix eigenvalue problem of the same
dimension. In both the unbounded domain and in the pipe for blockage ratios between 0.2 and
0.7, a real eigenvalue corresponding to an eigenvector with an azimuthal wavenumber of 1,
was determined to be the first to cross the imaginary axis, indicating the loss of stability to a
steady asymmetric flow with azimuthal wavenumber of 1.

Relatively few numerical studies have investigated the role played by the non-slip lateral
boundaries that are obtained when the sphere is located in a tube. Johansson [10] computed
the axisymmetric flow past a sphere in a cylinder at a single blockage ratio of 0.1, and more
recently Wham et al. [11] have calculated the flow for a range of blockage ratios. Bozzi et al.
[12] have examined the much more difficult problem of flow past deformable drops in tubes.
The major focus of all these studies has been the drag on the sphere (and deformations for
[12]) rather than the stability of the computed axisymmetric flows.

In this paper we show how results from group theory applied to bifurcation problems can
be used to reduce the complex matrix eigenvalue problem solved by Natarajan and Acrivos [6]
to the real matrix eigenvalue problem investigated by Tavener [8]. We also show how an
appropriately defined ‘extended system’ [13] may be used to calculate the symmetry breaking
bifurcation points detected by both authors in a more robust and efficient manner. However,
eigenvalue calculations are still required to ensure that the calculated bifurcation point
corresponds to the instability that occurs for the lowest flow rate. It is important to note that
even when there is a zero real eigenvalue with a corresponding singular Jacobian matrix, great
care is needed when trying to locate this zero eigenvalue. The standard ‘change in sign of the
determinant’ technique can be made to work only if an appropriately restricted Jacobian is
used.

The importance of symmetry in bifurcation problems is well known and many of the key
concepts, including the connection with group representation theory, were introduced or
clarified in the books by Vanderbauwhede [14], Golubitsky and Schaeffer [15] and Golubitsky
et al. [16]. The systematic numerical analysis of bifurcation in the presence of symmetry was
started by Werner and Spence [13], Brezzi et al. [17] and Werner [18] for simple groups (e.g.
Z2). Dellnitz and Werner [19] and Werner [20] continued the detailed study for more general
finite groups (e.g. Dn). Independently, Healey and his students [21–24], motivated by examples
in structural mechanics, and Aston [25,26], motivated by a problem in water waves, developed
similar theories but which allowed for infinite groups. An important idea is that, under the
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action of a group and for an appropriately chosen basis, the Jacobian of a non-linear problem
‘block-diagonalizes’, with consequent savings for numerical algorithms, and improved theoret-
ical understanding [20,23,26]. Many of the group theoretic ideas can appear complicated, and
one aim of this paper is to explain them as simply as possible for the O(2) group, which is
relevant for many problems defined on a cylindrical domain.

It is important to note that the results of this paper apply to all O(2)-symmetric problems
and not just the example studied by Natarajan and Acrivos [6] and Tavener [8]. Group
theoretic methods provide a rigorous justification of the considerable saving in computational
expense when solving the linearized stability problem for all physical problems involving the
breaking of an O(2)-symmetry. Similar savings in computational effort may be sought by the
application of general group theoretic constructs to other more exotic dihedral or orthogonal
symmetries (see, e.g. Dellnitz and Werner [19] and Dellnitz [27]). Here we simply illustrate their
application to the familiar and common O(2)-symmetry group and demonstrate the advan-
tages that can be accrued when studying the problem of flow past a sphere. More generally,
once an underlying group theoretic structure is appreciated, very similar extended systems may
be defined for the breaking of other symmetries. For example, Tavener et al. [28] efficiently
compute the breaking of two distinct types of rotational invariances using this approach in
their study of electro-hydrodynamic convection in nematic liquid crystals.

The detailed plan of the paper is as follows. In Section 2, we describe the general bifurcation
theory for the particular example of O(2)-symmetry and explain in detail the technique for
detecting both steady and Hopf bifurcations. In particular, we make the connection between
the ‘appropriately restricted Jacobian’ and the ‘block-diagonalization’ in the previous para-
graphs. In addition, we describe how a steady bifurcation may be accurately and efficiently
computed using a generalization of the extended system presented in Werner and Spence [13],
and how to decide if a bifurcating branch is sub- or supercritical. In Section 3 we apply these
results to the Navier–Stokes equations and boundary conditions for the problem of flow past
a sphere in a pipe, explaining in detail the equivariance condition and writing out explicitly the
important components in the O(2) theory. Section 4 contains a detailed discussion of the
implementation of the extended system used to compute the bifurcation point in the physical
example. In Section 5 we discuss the implications of the theory in Section 2 for the usual
stability analysis, and hence give an improved stability analysis for the fluids problem that
produces a real matrix eigenvalue problem directly. Numerical results are presented in Section
6, where the critical Reynolds number is plotted as a function of blockage ratio. A minor
change in the boundary conditions allows the effect of a supporting wire, or sting, to be
determined.

2. BIFURCATION THEORY IN THE PRESENCE OF O(2)-SYMMETRY

2.1. Preliminaries

Consider time-dependent non-linear problems of the form

Byt+ f(y, l)=0, y(t)�H, l�R, (1)
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where H is a Hilbert space with inner product � · , · �, f : H×R�H is a smooth non-linear
operator that is equivariant with respect to O(2), B is a linear operator on H that is
equivariant with respect to O(2), and yt=dy/dt. To be precise about the equivariance
condition, recall that O(2) is the Lie group generated by rotations ra, a�R and a reflection s,
satisfying, for any a, b�R,

ra+2p=ra, ra+b=rarb=rbra, s2=r0=r2p=1, sra=r−as, (2)

where 1 is the group identity. An action of O(2) on H is a continuous mapping r :
O(2)×H�H, (g, y)�r(g, y)
gy such that 1y=y and (g1g2)y=g1(g2y) for all y�H,
g1, g2�O(2). For any action r of O(2) on H we can define an orthogonal representation T in
the space of linear homeomorphisms on H

T(g)y
gy,

through the choice of an O(2)-invariant inner product

�T(g)y1, T(g)y2�=�y1, y2� Öy1, y2�H, Ög�O(2). (3)

To say that B and f are equivariant with respect to the action of O(2) means that

T(g)B=BT(g) Ög�O(2) (4)

and

T(g)f(y, l)= f(T(g)y, l) Ög�O(2), Öy�H, (5)

where T(g) is a representation of O(2). An immediate consequence of (4) and (5) is that if y
solves (1) for a given l, then so does T(g)y for all g�O(2), giving a conjugacy class of solutions
of (1).

A representation of O(2) on a Hilbert space appropriate for the analysis of the Navier–
Stokes equations in cylindrical co-ordinates is given in Section 3. A much simpler example is
the linear equation

−u¦+lu=0, (6)

with 2p periodic boundary conditions over 05x52p. It is easy to see that this equation is
equivariant with respect to the representation of O(2) given by T(ra)u(x)=u(x+a) and
T(s)u(x)= −u(−x). This is the natural representation for (6) and is used by Aston [25] in the
analysis and numerical solution of the Kuramoto–Sivashinsky equation [29]. Other examples
involving the group O(2) are found in Vanderbauwhede [14].

We are mainly interested in bifurcations from paths of steady O(2)symmetric solutions of
(1). Denote the set of O(2)-symmetric elements of H by HO(2), i.e.
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HO(2)�{y�H, y=T(g)y, Ög�O(2)}.

An immediate consequence of (5) is that HO(2) is invariant under f since, for yO(2)�HO(2),

f(yO(2), l)= f(T(g)yO(2), l)=T(g)f(yO(2), l), (7)

and we may define fO(2) as the restriction of f to HO(2). Hence, steady O(2)-symmetric solutions
of (1) and paths of such solutions, say

C={(y(l), l): y(l)�HO(2), l�I},

where I is a given interval, may be computed by solving the reduced problem

fO(2) (yO(2)(l), l)=0, yO(2)�HO(2). (8)

In Section 3 a problem defined on a cylindrical domain is considered, and in this case, the
O(2)-symmetric solutions are axisymmetric, and have zero swirl.

Define A(l) to be the Jacobian matrix of f with respect to y along the path C, i.e.

A(l)� fy(y(l), l), (y(l), l)�C. (9)

By differentiating (5) with respect to y we have

T(g)fy(y(l), l)= fy(T(g)y(l), l)T(g)

and if y(l)�HO(2), then T(g)y(l)=y(l), producing

T(g)A(l)=A(l)T(g), (10)

which is the same equivariance condition as that satisfied by B given by Equation (4).
It is a standard result (see, e.g. Aston [26], Theorems 2.6 and 2.11) that, for the special case

of the group O(2), there is a unique orthogonal decomposition of H

H= %
�

m=0

�Vm, VmÞVl, m" l, (11)

where Vm is an isotypic component of H, i.e. an O(2)-invariant subspace of H, with the
additional property in this case that Vm is irreducible. In other words, for y�Vm, we have
T(g)y�Vm for all g�O(2) and Vm has no proper O(2)-invariant subspaces.

It is important to note that for a general group, the isotypic components are usually not
irreducible, as can be seen in Aston [25], where an example involving the dihedral group D4 is
discussed in detail. However, the group O(2), though infinite, has a rather simple structure and
perhaps for this reason is not often studied in detail in bifurcation texts. An exception to this
is the early book by Vanderbanwhede [14], which contains many interesting and informative
examples with O(2)-symmetry.
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Equation (11) may be compared with the well-known decomposition of H under the action
of Z2, the group {1, s}, with s a reflection. Then H can be decomposed into symmetric and
antisymmetric subspaces

H=Hs�Ha, (12)

where y�Hs[ sy=y, and y�Ha[ sy= −y.
For the 2p periodic example (6) mentioned in Section 2.1, the isotypic components are easily

shown to be V0=span{1}, i.e. the constant functions, and

Vm=span{cos mx, sin mx}, m=1, 2, . . . , (13)

as one would expect from the theory of Fourier series. In fact, for the group O(2), Equation
(11) merely says that any element of H can be expressed uniquely as a Fourier series in cos mx
and sin mx. In this case, the invariance of Vm is easily shown, since if u(x)=cos mx, then

T(ra) cos mx=cos ma cos mx−sin ma sin mx, (14)

and if u(x)=sin mx then

T(ra) sin mx=sin ma cos mx+cos ma sin mx. (15)

2.2. Eigen6alue theory for O(2)-equi6ariant linear operators

Standard linear stability arguments show that a linearly stable O(2)-symmetric solution will
lose stability at l=l0 when the generalized eigenvalue problem

mBf=A(l)f, (16)

where B and A(l) are linear operators on H, has an eigenvalue m(l0) with Re(m(l0))=0 and
(d/dl)[Re(m(l0))]"0. If m(l0) is real then there is a steady bifurcation and if m(l0) is complex
then there is a Hopf bifurcation, but care is needed since the presence of O(2)-symmetry means
that most of the eigenvalues of (16) occur with a multiplicity of two. However, we shall show
that since B and A(l) are O(2)-equivariant, problem (16) may be reduced to one in which
simple eigenvalues of a real generalized eigenvalue problem are sought.

Werner [20] provides a complete block diagonalization theory for the eigenvalue problem
A(l)f=mf, where A(l) is an n×n real matrix that satisfies an equivariance condition with
respect to a compact Lie group of n×n orthogonal matrices. Aston [26] discusses equivariant
bifurcation theory for general compact Lie groups, including O(2), applied to problems
defined on a Hilbert space. Healey and Treacy [23] present similar results for structures
problems, and these were used by Wohlever and Healey [24] in an analysis of an axially
compressed cylindrical shell. In this subsection we use the results of these three papers to give
the theory for a generalized eigenvalue problem mBf=A(l)f, where B and A(l) are
O(2)-equivariant linear operators on a Hilbert space.
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The following theorem is a key result:

Theorem 2.2.1
Let A be any O(2)-equivariant linear operator on the Hilbert space H. Then A : Vm�Vm,
where the Vm are as in (11).

Proof
This result is a special case of Theorem 3.1 in Aston [26] (see also Section 2.3 of [20]).
However, for the group O(2) a straightforward proof by contradiction can be given. Assume
that for some ym�Vm, Aym=zm+zn, with zm�Vm and zn�Vn, m"n. Now, with T(g)=T(ra),
for some a� [0, 2p), and using (14) and (15), it is observed that T(ra)ym is a linear combination
of cos ma and sin ma. Thus, AT(ra)ym is also a linear combination of these terms. However,
T(ra)Aym= (T(ra)zm+T(ra)zn) will be a linear combination of cos ma, sin ma, cos na and
sin na. This contradicts the identity AT(ra)=T(ra)A Öa, unless zn=0. Clearly this argument
extends to cover the assumption that Aym=zm+zÞ

m, zÞ
m�VÞ

m. 


It is easily shown using (3) and (4) that if A is O(2)-equivariant then so is the adjoint
operator A*. Thus, we have the following corollary.

Corollary 2.2.1
Let A be any O(2)-equivariant linear operator on the Hilbert space H. Then A*: Vm�Vm,
where A* is the adjoint of A and the Vm are as in (11).

Since B and A(l) are both O(2)-equivariant, Theorem 2.2.1 shows that the eigenvalue
problem mBf=A(l)f, see (16), decouples into the (infinite) set of finite-dimensional general-
ized eigenvalue problems

mBmf=Am(l)f, f�Vm, m=0, 1, 2, . . . , (17)

where Bm and Am(l) are the restrictions of B and A(l) to Vm respectively. Equivalently, using
the notation of [26],

m diag(Bm)f=diag(Am(l))f, f�H, m=0, 1, 2, . . . , (18)

and it is this decomposition that leads to the use of the term ‘block-diagonalization’, even
when talking about infinite-dimensional operators (see, e.g. Healey and Treacy [23]).

Roughly speaking, one can think of the isotypic decomposition (11) as being produced by
the ‘rotation’ elements ra of O(2). The fact that there is also a ‘reflection’ element has not yet
been used, and indeed Theorem 3.3, Aston [26] applied to O(2), shows there is a finer block
decomposition

Vm=Vm
s �Vm

a , m=1, 2, . . . , (19)

where Vm
s and Vm

a are the symmetric and anti-symmetric components of Vm, see (12). Further
(Theorem 2.3 [20], Theorem 3.3 [26] and Figure 3 of [24]), Vm

s and Vm
a are invariant subspaces
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of B and A(l), and if we denote the restriction of Am(l) to Vm
s (Vm

a ) by Am
s (Am

a ) and similarly
for Bm, then for m=1, 2, . . . , Equation (18) can be further reduced to

m
�Bm

s

0
0

Bm
a

��f s

fa

�
=
�Am

s

0
0

Am
a

��f s

fa

�
, m=1, 2, . . . , (20)

with crucially

Bm
s =Bm

a and Am
s =Am

a , m=1, 2, . . . . (21)

Thus Am(l), m=1, 2 . . . is diagonalized into two identical sub-blocks and similarly for Bm.
For the linear problem (6), the two identical sub-blocks are 0=m2+l, m=1, 2 . . .

Returning to the eigenvalue problem mBf=A(l)f, we have, therefore, proved the following
lemma (see also Proposition 3.6 of [20]).

Lemma 2.2.1
Let A(l) and B be O(2)-equivariant.
(a) (m, f) is an eigenpair of mBf=A(l)f iff (m, f) is an eigenpair of mBmf=Am(l)f, f�Vm

for some m.
(b) If m"0 in (a), then m has a geometric multiplicity of 2, with the corresponding
eigenvectors f s and fa satisfying mBm

s f s=Am
s (l)f s and mBm

a fa=Am
a (l)fa, with Bm

s =Bm
a

and Am
s (l)=Am

a (l).

Definition 2.2.1
Following Definition 3.7 in [20], we call m an O(2)-simple eigenvalue if
(a) there is only one m for which m is an eigenvalue of mBmf=Am(l)f, and
(b) if in (a), m=0, m is an algebraically simple eigenvalue of mB0f=A0(l)f, or if m"0, m is
an algebraically simple eigenvalue of mBm

s f=Am
s (l)f (and mBm

a f=Am
a (l)f).

It is now a simple matter (see Section 3.2 of [20]) to show that as the parameter l, which
describes the curve C varies, O(2)-simple eigenvalues of mBf=A(l)f behave like algebraically
simple eigenvalues of matrices with no equivariance properties.

2.3. Steady state bifurcation theory

The bifurcation theory presented here is mainly the restriction of the results of Section 3 of [26]
to the O(2) case applied to (1).

Assume the curve of O(2)-symmetric solutions is being computed using (8). Further assume
that (y(l0), l0)�C and that m(l0)=0 is an O(2)-simple eigenvalue of mBf=A(l0)f. Let
N0=Null(A(l0)). Clearly N0¦Vm for some Vm from Lemma 2.2.1. If N0�V0, i.e.
N0�HO(2)"{0}, then even if bifurcation occurs, the O(2)-symmetry will not be broken, hence
this would be an O(2)-symmetry preserving bifurcation (generically, a turning point or fold
point in the space of O(2)-symmetric functions). This case is of less interest to us and is
excluded from the next theorem by the following assumption.
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We assume

Assumption 2.3.1
N0¦Vm, for some m"0,

and

Assumption 2.3.2
m is an O(2)-simple eigenvalue, i.e.

dim(N0SH s)=1 and dim(N0SHa)=1,

where H s={y : sy=y} and Ha={y : sy= −y}, the symmetric and anti-symmetric elements of
H.

Before stating the main bifurcation result we first need to introduce some terms. We define
the scalar bl by

bl��c0, fyl(y(l0), l0)f0+ fyy(y(l0), l0)f06�, (22)

where f0�Vm
s �VmSH s, c0�Null( fy(y(l0), l0)*)SH s, where * denotes the adjoint operator,

and 6�HO(2) is the unique solution of

fy(y(l0), l0)6+ fl(y(l0), l0)=0, (23)

since fl(y(l0), l0)�HO(2) for y(l0)�HO(2). In fact if 6�HO(2) and f0�Vm
s , then

fyl(y(l0), l0), l0)f0�Vm
s , and fyy(y(l0), l0)f06�Vm

s . (These are proved after differentiating
Equation (5) appropriately.)

The next theorem provides the main bifurcation result. It is derived from Theorems 3.4 and
3.5 of [26] and Theorem 6.4.3 of [14].

Theorem 2.3.1
Let y(l0)�HO(2). Suppose A(l0) is the Fredholm of index zero and that Assumptions 2.3.1 and
2.3.2 hold. Assume the non-degeneracy condition

bl"0. (24)

Then there exists a secondary branch of O(2)-symmetry breaking solutions. The bifurcation is
of pitchfork type and the bifurcating branch has Dm symmetry, where m is as in Assumption
2.3.1. (Here Dm is the dihedral group generated by r2p/m and s.)

Proof
The existence of a branch follows from the equivariant branching lemma [14,30] (see also [26]).
The fact that the bifurcation is pitchfork follows from case (ii) of Theorem 3.5 of [26] since
NO(2)(Z2)/Z2 is isomorphic to Z2, where NO(2)(Z2) is the normalizer of Z2 in O(2) defined by

NO(2)(Z2)={g�O(2): gs=sg Ös�Z2}.

The fact that the bifurcating branch is in Dm is proved in Theorem 6.4.3 of [14]. 
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A test for steady bifurcations
Note that unless m=0, a zero eigenvalue of mBmf=Amf along a path of O(2)-symmetric
solutions cannot be detected by looking for a change in sign in det A(l) or even det Am(l),
since two eigenvalues pass through zero at l=l0. However, if only steady bifurcations are
sought then a test based on detecting a sign change in det Am

s (or in det Am
a ) would work since

both these matrices have a simple eigenvalue at l=l0.
Once a steady bifurcation has been located approximately, it may be calculated accurately

using a generalization of the ‘extended system’ introduced by Werner and Spence [13] to
compute pitchfork bifurcation points. The method is exactly as described in Theorem 3.6 of
[26], which we specialize here to the O(2) case.

Theorem 2.3.2
Let (y(l0), l0)�HO(2)×R and assume Assumptions 2.3.1 and 2.3.2 hold with N0¦Vm for
some m"0. Then, the extended system

G(z)=0, G : Z�Z, (25)

where

G(z)=Ã
Á

Ä

f(y, l)
fy(y, l)f

�l, f�−1
Ã
Â

Å
, yÃ

Á

Ä

y
f

l

Ã
Â

Å
�Z,

with Z�HO(2)×Vm
s ×R, l�Vm

s , has an isolated solution (y0, f0, l0), where f0�Vm
s iff the

non-degeneracy condition (24) holds.
Note that the theorem is true if Vm

s is replaced by Vm
a throughout. The system G(z)=0 is

known as an ‘extended system’.
When answering questions on linearized stability of steady solutions of (1), it is often

important to know if the bifurcating branch is subcritical or supercritical. To do this we need
to calculate certain quantities involving higher derivatives of fy. First note that by differentiat-
ing (5) and setting y�HO(2) then ÖT(g),

T(g)fyy(y, l)u6= fyy(T(g)y, l)T(g)uT(g)6= fyy(y, l)T(g)uT(g)6.

Similarly, for y�HO(2) and ÖT(g),

T(g)fyyy(y, l)u6w= fyyy(y, l)T(g)uT(g)6T(g)w.

Thus, with f0�Vm
s (i.e. f0 is a multiple of cos mx)

fyy(y, l)f0f0�HO(2)�V2m
s ,
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since cos2 mx= (1+cos 2mx)/2, and

fyyy(y, l)f0f0f0ª em+e3m�Vm
s �V3m

s ,

since cos3 mx= (3 cos mx+cos 3mx)/4. We introduce z=z0+z2m�HO(2)�V2m respectively,
where z is the unique solution of

fy(y(l0), l0)z+ fyy(y(l0), l0)f0f0=0. (26)

To decide on sub- or supercriticality we need to calculate bl in (22) and d, defined by (see
Cliffe and Spence [31])

d��c0, fyyy(y(l0), l0)f0f0f0+3fyy(y(l0), l0)f0z�, (27)

where f0 and c0 are as in (22) and z is given by (26). Now, using Corollary 2.2.1, it is easily
seen that c0 is perpendicular to Vm

Þ. Thus, d can be found from

d��c0, em+3fyy(y(l0), l0)f0z0�, (28)

with em and z0 defined above. Note that d"0 ensures that there is a quadratic pitchfork
bifurcation, whereas if d=0 then there would be a quartic, or even more degenerate, pitchfork
bifurcation (see Cliffe and Spence [31]). The following lemma provides the test for sub- or
supercriticality.

Lemma 2.3.1
Assume d/bl"0, where bl and d are given in (22) and (28) respectively. Then the bifurcation
is supercritical if d/blB0, and subcritical if d/bl\0.

Proof
In the proof of Theorem 2.3.1 it is shown that the pitchfork bifurcation is essentially of
Z2-symmetry breaking type. In Section 3 of [31] it is shown by a Lyapunov–Schmidt reduction
procedure that the reduced equation for a Z2-symmetry breaking bifurcation is

bllx+
d
6

x3+h.o.t=0,

and so if d/blB0 this is (contact) equivalent to the normal form lx−x3=0, which has
supercritical bifurcating branches. Similarly, d/bl\0 leads to subcritical bifurcating
branches. 


2.4. Time-dependent bifurcation theory

In this section we shall only discuss how to detect a Hopf bifurcation point on a path of
O(2)-symmetric steady states of (1). For more details on the numerical analysis we refer the
reader to [19,27], and to [16] for a more complete account of bifurcation theory for non-linear
dynamical systems in the presence of O(2)-symmetry.
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We shall content ourselves here with noting that O(2)-symmetry breaking Hopf bifurcations
can only occur at l=l0 if mBf=A(l0)f has a complex eigenvalue with Re(m(l0))=0. Lemma
2.2.1 applies here also and immediately we see that symmetry breaking Hopf bifurcation points
at l=l0 are only possible if, for m"0, mBm

s f s=Am
s (l0)f s (or equivalently mBm

a fa=
Am

a (l0)fa) has a purely imaginary eigenvalue pair. Assuming (see [20], Definition 4.12) that
m(l0) is simple and (d/dl)[Re(m(l0))]"0, then we say that (y0, l0) is an O(2)-symmetry
breaking Hopf bifurcation. Symmetry preserving Hopf bifurcations correspond to complex
eigenvalues in the m=0 block, mB0f=A0(l0)f.

Since the bifurcation example of interest in Section 3 is a steady bifurcation, we do not
consider this further here. We complete this section with a statement of a general means of
detecting steady or Hopf bifurcations.

A test to detect a steady or Hopf bifurcations
If both steady and Hopf bifurcations are sought along a path of O(2)-symmetric steady
solutions, then the eigenvalues nearest the imaginary axis need to be found for the problems
mB0f=A0f, f�HO(2), and mBm

s f s=Am
s f s, m=1, 2 . . . . In practice one would choose an

upper limit for m, say mmax and check the eigenvalues of the eigenvalue problems for
m=0, 1, 2, . . . , mmax. For the numerical calculations in Section 5, mmax was taken to be 4.

An account of how this may be accomplished using a technique based on the Cayley
transform [9] is given in Tavener [8].

3. THE FLUIDS PROBLEM

We now apply the abstract O(2)-symmetric bifurcation theory developed in Section 2 to the
flow of a Newtonian fluid past a centrally located sphere in a pipe. In the usual cylindrical
co-ordinates, the steady Navier–Stokes equations are

Re
�(ur

(t
+ur

(ur
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+
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r
(ur
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(ur
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−
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+
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(
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In order to non-dimensionalize the Navier–Stokes equations as above, the diameter of the
pipe D was chosen as the length scale and the mean velocity

U( =
4

pD2

& D/2

0

2pru*z dr,

as the velocity scale, where uz* is the (dimensional) parabolic axial velocity that would exist in
an unobstructed pipe. The Reynolds number Re=DU( /n, where n is the kinematic viscosity.
We impose non-slip boundary conditions on the surface of the sphere and along the walls of
the pipe, and assume that a fully developed parabolic velocity profile is attained sufficiently far
upstream and downstream of the sphere.

Let y(t) be a solution of Equations (29)–(32), i.e.

y(t)=Ã
Ã

Ã

Á

Ä

ur(r, u, z)
uu(r, u, z)
uz(r, u, z)
p(r, u, z)

Ã
Ã

Ã

Â

Å

,

where y(t) lies in the Hilbert space H=W 1,2(V)3×L2(D). Equations (29)–(32) may be
combined to define a mapping

f(y, Re): H×R�H. (33)

The bounded linear operators

RaÃ
Ã

Ã

Á

Ä

ur(r, u, z)
uu(r, u, z)
uz(r, u, z)
p(r, u, z)

Ã
Ã

Ã

Â

Å

=Ã
Ã

Ã

Á

Ä

ur(r, u+a, z)
uu(r, u+a, z)
uz(r, u+a, z)
p(r, u+a, z)

Ã
Ã

Ã

Â

Å

, a� [0, 2p), (34)

and

SÃ
Ã

Ã

Á

Ä

ur(r, u, z)
uu(r, u, z)
uz(r, u, z)
p(r, u, z)

Ã
Ã

Ã

Â

Å

=Ã
Ã

Ã

Á

Ä

ur(r, −u, z)
−uu(r, −u, z)

uz(r, −u, z)
p(r, −u, z)

Ã
Ã

Ã

Â

Å

(35)
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are representations of the symmetry group O(2) on the Hilbert space H. It is straightforward
to show that the operator f defined by Equation (33) is equivariant with respect to both Ra and
S, i.e.

Raf(y, Re)= f(Ray, Re) (36)

and

Sf(y, Re)= f(Sy, Re). (37)

Applying the theory in Section 2.2, especially Equations (11) and (13) (see also Aston [25]),
the solution space H may be decomposed as an orthogonal direct sum of finite-dimensional
O(2)-irreducible subspaces Vm,

H=V0�V1�V2� · · · ,

where

Vm=spanÍ
Ã

Ã

Á

Ä

Ã
Ã

Ã

Á

Ä

ur
m(r, z) cos mu

uu
m(r, z) sin mu

uz
m(r, z) cos mu

pm(r, z) cos mu

Ã
Ã

Ã

Â

Å

, Ã
Ã

Ã

Á

Ä

ur
m(r, z) sin mu

uu
m(r, z) cos mu

uz
m(r, z) sin mu

pm(r, z) sin mu

Ã
Ã

Ã

Â

Å

Ì
Ã

Ã

Â

Å

. (38)

A (matrix) representation of O(2) on the irreducible subspace Vm is

Ra
m=

� C
−D

D
C
�

,

where

C=Ã
Ã

Ã

Á

Ä

cos ma

0
0
0

0
cos ma

0
0

0
0

cos ma

0

0
0
0

cos ma

Ã
Ã

Ã

Â

Å

,

D=Ã
Ã

Ã
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Ä

sin ma

0
0
0

0
−sin ma

0
0

0
0

sin ma

0

0
0
0

sin ma
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,
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and

Sm=
�E

0
0

−E
�

,

where

E=Ã
Ã

Ã

Á

Ä

1
0
0
0

0
−1

0
0

0
0
1
0

0
0
0
1

Ã
Ã

Ã

Â

Å

.

Notice that each isotypic subspace is two(×4)-dimensional.
Due to the symmetrical nature of the physical domain and to the boundary conditions

imposed, there are solutions of the flow problem that are O(2)-invariant. Let HO(2) be the
subspace of O(2)-invariant solutions. Following the theory in Section 2 we define

f O(2): HO(2)�HO(2) (39)

to be the restriction of f to HO(2).
In order to compute O(2)-invariant solutions we solved Equations (29)–(32) in the domain

V, shown in Figure 1, which is a radial slice through the physical domain. Non-slip velocity
boundary conditions were imposed on the surface of the sphere and along the walls of the
pipe. At the inflow boundary only the axial component of the velocity field is non-zero and
uz(r) is both axisymmetric and time independent. The Dirichlet boundary conditions applied
were, therefore,

ur=uu=uz=0 on (Vpipe,

ur=uu=uz=0 on (Vsphere,

ur=uu=0, u(z)=2(0.5−r)(0.5+r) on (Vin. (40)

Figure 1. Sketch of the physical domain.
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The boundary conditions along the remaining boundaries of V were chosen to be those arising
as natural boundary conditions when a weak formulation of Equations (29)–(32) is con-
structed, namely

−p+
(uz

(z
=0,

(ur

(z
=
(uu

(z
=0 on (Vout,

−p+
(ur

(r
=0,

(uu

(r
=
(uz

(r
=0 on (Vcenterline. (41)

As a consequence of Equation (36) and (37), for y�HO(2), we can use Equations (17) and
(18) to decompose the Fréchet derivative fy(y, Re) into block-diagonal form

fy(y, Re)=diag( fy
m(y, Re)), m=0, 1, 2, . . . ,

where fy
m= fy �Vm and fy

m: Vm�Vm.
Using Equations (19)–(21) we can further decompose the block-diagonal structure of fy for

m"0. To avoid a double subscript notation we define gy
m: Vm

s �Vm
s and hy

m: Vm
a �Vm

a , such
that

fy
m=diag(gy

m, hy
m), m"0,

where gy
m and hy

m are identical.
In this way we reduce the problem of finding a singular point of fy to that of finding a

singular point of gy
m for some m. If gy

m is singular for any m"0, then Theorem 2.3.1 states that
there will be a bifurcating branch of Dm-invariant solutions, i.e. solutions that are invariant
with respect to S and R2p/m, and that the symmetry breaking will occur at a pitchfork
bifurcation point, which may be calculated using the extended system (25).

4. SOLUTION PROCEDURE

We construct the weak form of Equations (29)–(32) and boundary conditions (40) and (41)
and discretize the O(2)-symmetric subspace HO(2) using a finite element approximation in a
radial slice through the full cylindrical domain. The finite-dimensional approximating subspace
HO(2)¦HO(2) of dimension N, say, was constructed using quadrilateral elements with bi-
quadratic velocity interpolation and discontinuous linear pressure interpolation using the finite
element code ENTWIFE [32]. Let f : HO(2)�HO(2) be the discretized weak form of the
restriction of f to HO(2). Further, let Vm

s and Vm
a be the discretizations versions of subspaces Vm

s

and Vm
a respectively and gy

m and hy
m be the discretized versions of Fréchet derivatives gy

m and
hy

m respectively.
We locate steady symmetry breaking bifurcation points by constructing a discretized version

of the extended system (25) as follows.
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Find y�HO(2), fb �Vm
s and l�R such that

G(z)=Ã
Á

Ä

f
gy

mfb
lTfb −1

Ã
Â

Å
=0, (42)

where z= (y, fb , l)= (HO(2)×Vm
s ×R)�Z and G : Z�Z. Note that dim(Z)=2N+1.

We could equally well have chosen to solve the problem: find y�HO(2), fb �Vm
a and l�R such

that

Ã
Á

Ä

f
hy

mfb
lTfb −1

Ã
Â

Å
=0.

The extended system (42) is a system of size (2N+1) and it might seem that when solving
(42) by Newton’s method one would have to actually solve a sequence of (2N+1)× (2N+1)
linear systems. In fact as was shown in Werner and Spence [13], these systems can be solved
efficiently by a procedure involving the solution of a system of size N with two right-hand
sides, and a system of size (N+1) with a single right-hand side.

In many cases one wishes to calculate a path of symmetry breaking bifurcations. We now
describe an appropriate solution procedure to compute such a path based on the technique in
Werner and Spence [13], which only requires additional back-substitutions. Consider the two
parameter problem f(y, l, s)=0. Assume that for fixed s a bifurcation point has been
calculated using (42). Now, as s varies a path of symmetry breaking bifurcations will be
described, given by the solutions of the following system, where y�HO(2), fb �Vm

s and l�R:

G(z, s)=Ã
Á

Ä

f(y, l, s)
gy

m(y, l, s)fb
lTfb −1

Ã
Â

Å
=0, (43)

where z= (y, fb , l)= (HO(2)×Vm
s ×R)�Z and G : Z×R�Z.

The path following could be accomplished as follows. For an initial guess (z0, s0) such that
G(z0, s0)"0, we seek Dz and Ds such that G(z0+Dz, s0+Ds)=0. Linearizing about (z0, s0).

G(z0+Dz, s0+Ds):G(z0, s0)+Gz(z0, s0)Dz+Gs(z0, s0)Ds=0

or

Gz(z0, s0)Dz+Gs(z0, s0)Ds= −G(z0, s0).

Applied to (43) this is
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Ã
Á

Ä

fy

gyy
m fb
0

0
gy

m

lT

fl

gyl
m fb
0

Ã
Â

Å
Ã
Á

Ä

Dy
Dfb
Dl

Ã
Â

Å
+Ã
Á

Ä

fs

gys
m fb
0

Ã
Â

Å
Ds= −Ã

Á

Ä

f
gy

mfb
lTfb −1

Ã
Â

Å
,

where the derivatives are evaluated at (z0, s0). Note that fy=g0
y, the Jacobian restricted to the

O(2)-symmetric space HO(2).
At a symmetry breaking bifurcation point m"0, so the matrix fy is invertible on HO(2) and

gm
y is singular on Vm

s . Letting

Dy=a+bDl+cDs, (44)

the equation

fyDy+ flDl+ fsDs= − f (45)

becomes

fy(a+bDl+cDs)+ flDl+ fsDs= − f

or

fya+ (fyb+ fl)Dl+ (fyc+ fs)Ds= − f,

and we can solve

fya= − f, (46)

fyb= − fl, (47)

fyc= − fs, (48)

for a, b, c�HO(2). Thus, we factorize a single N×N dimensional matrix and solve for three
different right-hand sides.

Since gy
m is not invertible on Vm, the second and third rows in the extended system

gyy
m fb Dy+gy

mDfb +gyl
m Dl+gys

m Ds= −gy
mfb , (49)

lTDfb = lTfb −1 (50)

are solved together. Letting

Dfb =d+eDs, (51)
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Dl=a+bDs, (52)

we have

Dy=a+bDl+cDs=a+b(a+bDs)+cDs= (a+ab)+ (bb+c)Ds. (53)

Substituting Equations (51)–(53) into Equation (49), we have

gyy
m fb [(a+ab)+ (bb+c)Ds ]+gy

m(d+eDs)+gyl
m fb (a+bDs)+gys

m fb Ds= −gy
mfb .

Hence

gyy
m fb a+agyy

m fb b+gy
md+agyl

m fb + [bgyy
m fb b+gyy

m fb c+gy
me+bgyl

m fb +gys
m fb ]Ds= −gy

mfb ,

or

gy
md+a(gyy

m fb b+gyl
m fb )= −gy

mfb −gyy
m fb a (54)

and

gy
me+b(gyy

m fb b+gyl
m fb )= −gys

m fb −gyy
m fb c. (55)

Substituting (51) into (50) we have

lT(d+eDs)= lTfb −1

or

lTd= lTfb −1 (56)

and

lTe=0. (57)

Given a, b and c as solutions to (46), (47) and (48) respectively, we solve (54) and (56)
together for d and a, and (55) and (57) together for e and b. Note that we solve a single
(N+1)× (N+1) dimensional system with two different right-hand sides. We then compute
Dfb and Dl and finally Dy by substituting into Equations (51)–(53) respectively.

To compute d/bl as required in Lemma 2.3.1, we first solve fyz=gyy
m fb fb for z�HO(2), then

calculate the ratio

cT(3gyy
m fb z+3gyyy

m fb fb fb )
cT(3gyy

m fb b+3gyl
m fb )

,
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where fyb= − fl, see Equation (47). It is worth mentioning that a change in the normalization
of f will change the value of d/bl, but does not change its sign, since if f�bf for some real
b, then z�b2z and d/bl�b2d/bl.

Starting values for the Newton iteration were determined from the previous linear stability
calculations reported by Tavener [8].

5. COMPARISON OF THEORY IN SECTION 2 TO THE STANDARD APPROACH

Natarajan and Acrivos [6], Tavener [8] and Kim and Pearlstein [33] carried out a stability
analysis for the problem in Section 3. Let

(ur, uu, uz, p)= (ur
0(r, z), 0, uz

0(r, z), p0(r, z))�HO(2)

denote a steady O(2)-symmetric solution of Equations (29)–(32). These authors considered
perturbations of the form

ur=ur
0(r, z)+eur

1(r, z) eimu−mt, . . . etc.,

and derived a complex matrix eigenvalue problem for each m. In all three papers it was
assumed, or stated without proof, that the perturbations do not introduce any mixed mode
terms in the linearization. Since the linearization satisfies the equivariance condition (10),
Theorem 2.2.1 applies and shows that this assumption is indeed correct. In addition, for m"0,
Tavener [8] showed how the complex matrix eigenvalue problem may be transformed to a real
eigenvalue problem by simple manipulation, namely by multiplying the ‘uu

1’ equation by i.
Lemma 2.2.1(b) shows that it will always be possible to make a transformation to a real matrix
eigenvalue problem for any O(2)-symmetric problem.

In fact, we now give a stability analysis that produces the real matrix eigenvalue problem
directly using our knowledge of the decomposition of H induced by the action of O(2) given
by Equation (38).

Consider a nearby solution of Equations (29)–(32) of the form

(ur
0, 0, uz

0, p0)+e [ur
1(r, z) e−mt (cos mu+ i sin mu), uu

1(r, z) e−mt (sin mu+ i cos mu)

× , uz
1(r, z) e−mt (cos mu+ i sin mu), p1(r, z)e−mt(cos mu+ i sin mu)], (58)

where 0Be�1, m is a positive integer and m is complex. Substituting the new solution into the
equilibrium equations (29)–(32) and equating to zero terms that are real and first-order in e,
the linearized equations are

R
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−mur
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0 (ur
1

(r
+ur

1 (ur
0

(r
+uz

0 (ur
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+ur
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which involve no imaginary terms. An identical set of equations is obtained by equating the
terms that are imaginary and first-order in e to be zero.

6. RESULTS

The critical Reynolds number Re obtained at a regular solution of the extended system (42) for
the flow past a centrally located sphere in a pipe is given as a function of blockage ratio (BR)
in Figure 2. For the purposes of comparison with experiments and computations of the

Figure 2. Critical Reynolds number, Re vs. BR for the flow past a sphere in a pipe.
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exterior flow past spheres in ‘unbounded’ domains, we define a second (dependent) Reynolds
number Red based on the sphere diameter, and the axial inlet velocity uz*(r) averaged across
the sphere cross-section. Let Red=dU( /n, where

U( d=
4

pd2

& d/2

0

2pruz*(r) dr,

with uz*(r) as in Section 3. The corresponding critical Reynolds number Red is given as a
function of blockage ratio in Table I and Figure 3. Our results are consistent with those of
Tavener [8], Figure 5. A finite element mesh with a length of three pipe diameters upstream of
the sphere and eight pipe diameters downstream of the sphere incorporating 4400 quadrilateral
elements was used to obtain these values. Based on the studies shown in Tables II and III, we
believe the critical Reynolds number to be accurate to within 1%.

The result of two consecutive mesh halvings is given in Table II for a blockage ratio of 0.5.
It is evident from Table III, that the effect of domain length downstream of the sphere is weak
and that even for very short domains, the estimate of the critical Reynolds number is
surprisingly good. This, and the null eigenvectors themselves (as presented previously by both
Natarajan and Acrivos [6] and Tavener [8]) indicate that the instability is localized in the
sphere wake.

As predicted by the theory in Section 2, the determinant of the Jacobian fy did not change
sign along the O(2)-symmetric solution branches at the symmetry breaking bifurcation points.
Previous eigenvalue computations by [8] were necessary to provide an initial guess for the
extended system (42). An assumption of smoothness with respect to the blockage ratio was
used to provide an initial guess for the critical Reynolds number for blockage ratios at which
eigenvalue computation had not been performed.

The sign of the ratio d/bl (Table II and indeed for all computations) indicates that these
pitchfork bifurcations are supercritical (see Lemma 2.3.1), a result that is consistent with both
the experimental evidence of Margarvey and Bishop [3], Nakamura [4] and Wu and Faeth [5],
the computational evidence of Tomboulides et al. [7] and the conjecture of Natarajan and
Acrivos [6]. It could not be determined by the earlier eigenvalue computations alone.

Table I. Critical Red vs. blockage ratio (BR)

BR Critical RedCritical Red BR

313.40.10 0.45224.4
0.500.15 227.2 330.3

232.6 0.550.20 337.0
241.5 0.600.25 327.7

301.60.65254.60.30
0.35 271.9 0.70 266.3

232.80.75292.40.40
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Figure 3. Critical Reynolds number, Red vs. BR for the flow past a sphere in a pipe.

Table II. Convergence study for BR 0.5

Number of Critical Red d/bl

elements

343.4275 −34.83
333.0 −31.871100
330.3 −33.394400

Table III. Effect of domain length for BR 0.75 using a
mesh with 1331 elements

Domain length downstream of Critical Red

sphere (pipe diameters)

3.5 233.6
233.75.5
233.88
234.010.5

13 234.2

Wham et al. [11] show that the presence of a rear-facing sting or wire that is sometimes used
in experiments to support a sphere makes only a 3% difference to the drag on the sphere.
Encouraged by this result, we repeated our computational procedure setting u=6=0 along
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the centerline of the pipe downstream of the sphere to model the presence of a wire. As can
been seen from Table IV, we observed a change in the critical Reynolds number at the
O(2)-symmetry breaking bifurcation point of between 3% and 5%. The bifurcation remains
supercritical in nature for all blockage ratios examined.

Plots of the critical Reynolds numbers Re and Red as a function of blockage ratio are shown
in Figures 4 and 5 respectively. These results were obtained on the same grid as that used for
the unsupported sphere. Based on a second convergence study (Table V) we again believe that
the critical Reynolds numbers are accurate to within 1%.

Table IV. Critical Red vs. BR

BR Critical Red BR Critical Red

322.70.10 235.9 0.45
339.90.15 238.2 0.50
346.80.55243.00.20

0.25 251.3 0.60 337.5
0.30 263.9 0.65 310.4

0.70281.00.35 273.1
0.40 301.5 237.60.75

Figure 4. Critical Reynolds number, Re vs. BR for the flow past a sphere with a downstream sting.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 175–200
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Figure 5. Critical Reynolds number, Red vs. BR for the flow past a sphere with a downstream sting.

Table V. Convergence study for BR 0.5.

Critical RedNumber of d/bl

elements

275 356.7 −71.63
344.6 −43.381100
339.94400 −43.51
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